SECONDARY METABOLITES BY CHEMICAL SCREENING. PART 19[†]

SM 196 A AND B, NOVEL BIOLOGICALLY ACTIVE ANGUCYCLINONES FROM Streptomyces sp.

SUSANNE GRABLEY, PETER HAMMANN*, Klaus Hütter, Heinz Kluge, Ralf Thiericke and Joachim Wink

> Hoechst AG, D-6230 Frankfurt/Main 80, FRG

> > AXEL ZEECK

Institut für Organische Chemie, Universität Göttingen, Tammannstraße 2, D-3400 Göttingen, FRG

(Received for publication January 7, 1991)

Application of a method of chemical screening²⁾, which based on the prior work of ZÄHNER *et al.*³⁾, gave rise to the detection, isolation and structure elucidation of two new angucyclinones⁴⁾ exhibiting biological activity. In addition, the known compounds 6-deoxy-8-O-methylrabelomycin (3)^{5,6)} and X-14881 E (4)⁷⁾ were detected in the same culture broth.

The producing organism Streptomyces sp. (DSM 4769) was isolated from a soil sample collected near Ajanta (India) and exhibits tightly spiraled, red spores with a smooth surface. Melanin production is positive. Cultivation was carried out in a seed medium (meat flour 2%, malt extract 10%, CaCO₃ 1%, pH adjusted to 7.2 prior to sterilization) inoculated from an agar slant culture and incubated for 48 hours at 27°C. The resulted seed medium (5%) was used to inoculate the production medium (glycerol 3%, casein peptone 0.2%, K₂HPO₄ 0.1%, NaCl 0.1%, MgSO₄·7H₂O 0.05% and 5ml of a mineral solution containing CaCl₂·2H₂O 3 g, $FeC_6H_5O_7$ 1 g, $MnSO_4$ 0.2 g, $ZnCl_2$ 0.1 g, $CuSO_4 \cdot 5H_2O = 0.025 g$, $Na_2B_4O_7 \cdot 10H_2O = 0.02 g$, Na₂MoO₄·2H₂O 0.01 g, and CoCl₂ 4 mg per liter water). Production was carried out in 300-ml Erlenmeyer flasks containing 100 ml of production medium (200 rpm on a rotary shaker, 30°C) or in 10-liter fermenters (250 rpm, aeration: 4 liters/minute) for 98 hours.

We prepared extracts from the culture filtrate following a procedure described elsewhere²⁾. Surprisingly, without the use of any staining reagent a colorless spot on the TLC plate (SM 196 A (1): Rf 0.25, CHCl₃-MeOH (15:1); Silica gel $60F_{254}$ on glass, Merck, HPTLC-Fertigplatten) immediately turned to brilliant red after exposing the TLC plate

[†] See ref 1.

to UV light (366 nm). In addition, two minor yellow spots (SM 196 B (2): Rf 0.40; 3: Rf 0.33) changed their color to orange. Development of the TLC plate in a second dimension using the same solvent system showed 1 to be converted into 2, 3, and 4, whereas 2 was transformed to 3 and 4, and 3 gave 4 possibly by H⁺-catalysis.

The culture filtrate (8 liters) of a 10-liter fermenter was extracted three times with 5 liters CH_2Cl_2 . The organic layer was evaporated to dryness and the remaining oily residue (4g) was chromatographed on a silica gel column (wrapped with aluminum foil to prevent photo-conversion; 30×3 cm; CHCl₃-MeOH (30:1)) to obtain the four detected metabolites: colorless crystalline SM 196 A (1, 33 mg), yellow amorphous SM 196 B (2, 22 mg), orange amorphous 3 (21 mg), and red 4 (12 mg, Rf 1.0). Due to the chemical instability of the compounds this purification turned out to be difficult, especially in the case of SM 196 B (2). The new angucyclinones 1 and 2 are soluble in MeOH, acetone, DMSO, dioxane, and CHCl₃ and are insoluble in H_2O or *n*-hexane.

The structures of 1 and 2 were ascertained by ¹H, ¹³C and 2D NMR techniques. Some of the relevant ¹H and ¹³C NMR data are summarized in Tables 1 and 2. The compounds of the SM 196 complex exhibit a benz[*a*]anthracene carbon skeleton and therefore belong to the group of angucyclinones⁸). Based on these NMR data, compound 3 was proved to be identical with 6-deoxy-8-O-methylrabelomycin^{5,6}) and 4 with X-14881 E⁷). The colorless

13-H₃

14-H₃

1.50 s (br)

4.04 d (J=0.2)

metabolite SM 196 A (1) possesses a dihydroquinone moiety in ring B and a secondary hydroxy group at C-1. FAB, CI (NH₃), and EI (70 eV) mass spectra of SM 196 A (1) showed peaks at m/z 338 (M⁺ - H₂) and 322 (M⁺ - H₂O).

Table 1. ¹³C NMR data of SM 196 A (1), B (2), and X-14881 E (4).

C-Atom	SM 196 A (1)	SM 196 B (2)	X-14881 E (4)
1	65.73	65.28	155.10
2	44.14	43.97	119.71
3	69.05	69.18	141.14
4	45.17	45.40	121.11
4a	136.43	142.15	130.67
5	135.70	136.05	137.53
6	128.81	127.27	122.76
6a	143.35	136.05	136.74ª
7	63.34	182.37	182.12
7a	129.36	120.60	119.15 ^b
8	156.81	159.71	159.57
9	114.78	117.69	118.20
10	129.54	135.03	135.21
11	120.21	120.16	120.97
lla	132.74	137.10	137.52
12	187.53	187.84	190.71
12a	128.81	131.06	138.37ª
12b	140.03	140.08	119.94 ^b
13	29.11	29.41	21.19
14	56.04	56.54	56.62

Bruker AM 360, 90 MHz, CDCl₃, δ values (ppm) with CDCl₃ as an internal standard (δ 77.00).

^{a,b} Assignment exchangeable.

SM 196 A (1) Proton SM 196 B (2) 1-H $5.59 \, dddd \, (J = 6.70, \, 5.87, \, 4.5, \, 0.5)$ 5.48 dddd (J = 6.93, 6.07, 4.2, 0.5)5.05 d (J = 4.2)1-OH 5.20 d (J=4.5)2.15 (J = -13.86, 6.07, 1.00)2-H, 2.16 ddd (J = -13.63, 5.87, 1.00)2.31 ddd (J = -13.63, 6.70, 1.50)2.34 ddd (J = -13.86, 6.93, 1.65)2-H_b 2.0 (br) 3-OH 1.48 (br) 2.91 dddq (J = -16.78, 1.65, 0.4) $4-H_a$ 2.90 dddq (J = -16.33, 1.50, 0.4)4-H_b $3.09 \, \mathrm{dddq} \, (J = -16.33, \, 1.00, \, 0.5, \, 0.4)$ $3.10 \, dddq \, (J = -16.78, 1.00, 0.5, 0.4)$ 5-H 7.48 dt (J=8.07, 0.4)7.51 dt (J=8.04, 0.4)7.85 d (J = 8.07)8.19 (J = 8.04)6-H 7-H 5.99 dd (J=2.0, 0.3)7-OH 4.13 d (J=2.0)7.20 ddd (J = 8.48, 0.96, 0.2)7.20 ddq (J=8.15, 0.74, 0.2)9-H 10-H 7.50 ddd (J=8.15, 7.92, 0.3)7.70 dd (J=8.48, 7.79)7.87 dd (J = 7.79, 0.96)7.92 dd J = 7.92, 0.74) 11-H

Table 2. ¹H NMR data of SM 196 A (1) and SM 196 B (2).

Bruker AM 360, 360 MHz, CDCl₃, δ values (ppm) and J (Hz), TMS as internal standard, (¹H)=0.000 ppm, temperature: 303 K display value.

1.50 s (br)

4.04 d (J=0.2)

	Staphylococcus aureus H 503	Streptococcus pyogenes		Hanna cimplar 1	Hornes simplay 2
		S 308/7	S 77/7	— Herpes simplex 1	Herpes simplex 2
1	100.0	25.0	12.5		
2	25.0	6.25	6.25	0.55	4.54

Table 3. Biological activities of 1 and 2 (MIC in μ g/ml).

The dihydroquinone is rapidly oxidized by oxygen in the air to the corresponding yellow quinone SM 196 B (2). Simultaneous radiation (366 nm) led to the orange 6-deoxy-8-O-methylrabelomycin (3), which exhibits both a quinone moiety in ring B and a ketone moiety in ring D. The brilliant red color observed on the TLC plate after treatment with UV light derives from the dehydration product X-14881 E (4), which is to be distinguished from the other compounds by aromatization of ring D. Scheme 1 illustrates the isolation sequence of the SM 196 antibiotic complex. Due to its rapid conversion to 2, 3, and 4 on TLC plates it could be assumed that SM 196 Å (1) is the native natural product. Therefore, no enzymatic steps seem to be involved in the dehydrogenation and dehydration reactions. To study the TLC-plate decomposition in more detail, these reactions were performed on preparative scale using more defined experimental conditions. Stirring of SM 196 A (1) in CHCl₃ in the presence of oxygen and in the absence of light the quinone 2 was formed within 4 hours. Performing the same reaction by irradiation of 1 with UV light (366 nm) for 6 hours yielded 3 in 60%. A side reaction to X-14881 E (4) was observed, which could be explained by hydrochloric acid impurities present in the solvent chloroform. This was proved by the conversion of 3 to 4 in chloroform/1% HCl in the dark.

The described angucyclinones SM 196 A (1) and (2) exhibit antibacterial⁹⁾ and antiviral activity¹⁰⁾ (see Table 3).

Addendum in Proof

Recently, an analog photo-induced oxidation as described for the antibiotics SM 196 A and B was reported for the rubiginones: OKA, M.; M. KONISHI, T. OKI and M. OHASHI: Absolute configuration of the rubiginones and photo-induced oxidation of the C-1 hydroxyl of the antibiotics to a ketone. Tetrahedron Letters 31: $7473 \sim 7474$, 1990.

Acknowledgments

We thank the Bundesministerium für Forschung

und Technologie (BMFT) for financial support (grant 0319311B) and appreciate the excellent technical assistance of M. OSWALD, H. SCHNEIDER, and P. WAHL.

References

- HENKEL, T.; S. BREIDING-MACK, A. ZEECK, S. GRABLEY, P. E. HAMMANN, K. HÜTTER, G. TILL, R. THIERICKE & J. WINK: Secondary metabolites by chemical screening, 18. Narbosines, new carbohydrate metabolites from *Streptomyces*. Liebigs Ann. Chem., in press
- GRABLEY, S.; J. WINK & A. ZEECK: Auffinden und Isolieren mikrobieller Sekundärstoffe am Beispiel des Chemischen Screenings. Jahrbuch Biotechnologie Band 3 1990/91. Ed., P. PRÄVE et al., pp. 379~390, Carl Hanser Verlag, 1990
- ZÄHNER, H.; H. DRAUTZ & W. WEBER: Novel approaches to metabolite screening. In Bioactive Microbial Products; Search and Discovery. Ed., J. D. BU'LOCK, et al., pp. 51~70, Academic Press, 1982
- 4) WINK, J.; P. HAMMANN, H. KLUGE, A. ROTH & I. WINKLER (Hoechst AG): New angucyclinones with antibiotic activity. Eur. Pat. Appl. 372 383A, Dec. 1, 1988
- 5) SHIGIHARA, Y.; Y. KOIZUMI, T. TAMAMURA, Y. HOMMA, K. ISSHIKI, K. DOBASHI, H. NAGANAWA & T. TAKEUCHI: 6-Deoxy-8-O-methylrabelomycin and 8-O-methylrabelomycin from a *Streptomyces* species. J. Antibiotics 41: 1260~1264, 1988
- 6) GILPIN, M. L.; J. BALCHIN, S. J. BOX & J. W. TYLER: MM 47755, a new benz[a]anthracene antibiotic from a streptomycete. J. Antibiotics 42: 627~628, 1989
- 7) MAEHR, H.; C. LIU, M. LIU, A. PERROTTA, J. M. SMALLHEER, T. H. WILLIAMS & J. F. BLOUNT: Microbial products. VI. Five novel metabolites related to benz[a]anthracene from an unidentified actinomycete designated X-14881. J. Antibiotics 35: 1627~1631, 1982
- DRAUTZ, H.; H. ZÄHNER, J. ROHR & A. ZEECK: Metabolic products of microorganisms. 234. Urdamycins, new angucycline antibiotics from *Strepto*myces fradiae. I. Isolation, characterization and biological properties. J. Antibiotics 39: 1657~1669, 1986
- 9) GRABLEY, S.; P. HAMMANN, W. RAETHER, J. WINK & A. ZEECK: Secondary metabolites by chemical

screening. II. Amycins A and B, two novel niphimycin analogs isolated from a high producer strain of elaiophylin and nigericin. J. Antibiotics $43:639 \sim 647$, 1990

10) Winkler, I.; E. Winkelmann, T. Scholl, M.

RÖSNER, G. JÄHNE & G. HELSBERG: Antiviral activity and pharmacokinetics of HOE 602, an acyclic nucleoside, in animal models. Antiviral Res. 14: $61 \sim 73$, 1990